
© Entelios 2013 

Programming Languages and the Power Grid 

Sebastian Egner, Head of Application Development, 
Entelios AG, Berlin. 
 
GOTO Aarhus, 30. September – 2. October 2013 



© Entelios 2013 

1.  The Power Grid 
-  Design of a national power grid 
-  Why and how to balance the grid 
-  Two things to keep in mind on national scale 

2.  Case Study 
-  Entelios AG 
-  The right language for the job 
-  Technology roadmap 
-  Experiences 

3.  Unfair Generalizations 
-  Two notable pitfalls of OO designs in practice 
-  The “2-out-of-3” rule of dealing with project risk 

4.  Programming Languages and the Power Grid 
-  Chains of availability 

Programming Languages and the Power Grid: Outline 
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The Power Grid 
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“Design	  is	  not	  about	  
the	  actual	  choices	  you	  make.	  
It	  is	  about	  the	  alterna7ves	  
you	  have	  considered.”	  
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Designing a Power Grid: Where do you want to be? 
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Reliability 

Costs Other: 
- Environment 
- Sustainability 
- Major Risks 

You are here! 
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Balancing the Power Grid 
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Germany: 4 TSOs 
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50.0 Hz 

50.2 Hz 

49.8 Hz 

Dynamic Balance 

Balancing the Power Grid 
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(put your  favorite 
 frequency here…) 

              Dynamic Balance 

Industry Principle: Generation       follows       Consumption 

   Operating 
Reserve 
Power 

Three level controller for reserve power (simplified): 
- Frequency reserve (PRL), 20..200 mHz 
- Secondary reserve (SRL), > 200 mHz, automatic 
- Replacement reserve (MRL), > 15 min, manual 
 

Germany: 15 GW per Hz  
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Balancing the Power Grid 
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                                            Dynamic Balance 

Generation       follows       Consumption, 
except for Wind and Solar. 

   

Germany: 11% Renewables. 
20 GW Peak (of 80 GW total) 
on 18. August 2012. 
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Balancing the Power Grid 
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Generation       follows       Consumption, 
except for Wind and Solar, 

and Demand-Response Management. 

      

              Dynamic Balance 

Demand-Response 
-  USA: Mature, IPO of 

EnerNOC, Inc., in 2007 
-  Load management within 

large consumers common, 
e.g. Xstrata Zink GmbH 

-  Extremely complex body of 
national regulations 

-  Europe: Early VC-funded 
companies (Entelios AG) 
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100 GW 
 

national, 
power grid 

(e.g. Germany) 

100 kW 
 

industrial, 
climate control 

100 MW 
 

industrial, 
arc furnace 

100 mW 
 

personal, 
mobile phone 

100 W 
 

residential, 
refridgerator 

Entelios AG 

The Power of the Power Grid: Mind the Order of Magnitude! 
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The Batteries of the Power Grid: Sometimes Not What You Expect 
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You say: derinding buffer of a paper mill (Stora Enso, Eilenburg, Saxony), … 

… I say: battery with 200 MWh capacity. 
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Case Study 
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§  Founded in 2010 by Oliver Stahl, Stephan Lindner and Thomas (Tom) Schulz 
§ VC-Funded (Series A completed in 2011 with a Dutch lead investor) 
§ Based in Germany (Munich, Berlin), employee range 20-50 + network of partners 
§ Runs its own Network Operations Center (NOC), with its own Balancing Area. 
§ Prequalified for providing Operating Reserve to German TSOs. 

Services 

Production of electrical energy by intelligent management of industrial consumers. 
 

Exploiting dormant load flexibility, in particular in-production buffers. 
 

Software-as-a-Service for Demand Response “(Virtual) Batteries Included”. 

Entelios AG  

14 
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1. Knowing the rules of the game: 
Law, body of other regulations and actual practice.  

2. The actual business model: 
“We sell A to B, who buy it because of C.” 
Exercise: Find A, B and C. (Note: Answers are graded in EUR +/−.) 

3.   Finding industrial participants: 
Why do they join? (Suppliers, found by sales process.) 

4.   Technology:  
Effective, reliable, usable, … and ever changing. 

Providing a Commercially Viable Demand-Response Service 
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Entelios AG in Context 

17 

Food processing  
plant 

Brewery 

Aluminum smelter 



© Entelios 2013 

Entelios AG in Context 
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Food processing  
plant 

Brewery 

Aluminum smelter 

EBox 

UEBox 
NOC 
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Key Functionality 
•  Back-office system: 24/7, soft-realtime signal acquisition / control signals from / to 

industrial participants and grid operators. Sample rate: 2/min – 20/min 
•  Front-office system: Soft-realtime GUI for interactive planning and execution of 

curtailment events (load reduction) under time constraints. Task rate: 0 – 1/min 
•  Remote connection (M2M) to industrial participants via Internet, UMTS, GSM 
•  Fieldbus-Interface to the PLCs of the SCADA system of the industrial participants 
•  Interface to the operations centers of the grid operators (IEC-104, MOLS, …) 
•  Unsupervised Recovery from transient failure: UPS, auto restart at various levels 

Additional Functionality (and there is a lot more…) 
•  Monitoring GUI, background screens 
•  Archiving of essentially all communications with external parties 
•  Export of time series data for periodic and ad-hoc analysis 
•  Periodic transfer of data to Energy Data Mgt. / Workflow / Trading Systems 
•  Various reports to participants and TSOs (for prequalification and quality control) 
 
 

The right language for the job… So what is the job? 

19 
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Snippets of how we do things: 
•  Cross-platform development from Day 1: Win 2008 Srv, Win 7 {32,64}-bit, MacOS X, 

{Deb,Ubu,SuSE}-Linux, embedded Linux. 
•  For new hires: “You can BYO anything you know how to use, or you get a Windows 

Notebook from us. Your choice.” So far: 100% Windows Notebooks, two of them 
actually used to work in Windows. 

•  Productivity = Hours * Effectiveness. (The second factor is the important one.) 
 
Some principles: 
•  A successful system allows the user to do what she wants. 
•  Each tool is suitable for some task, but for other tasks there might be better tools.  
•  Choose which tools not to use. (Features bundled with your favourite toolkit…) 
•  The hardest task of software engineerign: getting rid of something. 

The right language for the job… Ways to do a job 

20 
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Bits of Our Technology Roadmap (on the Rearview Mirror) 
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GUI 

Server 

embedded 3rd party 
C/C++ 

Python 
Erlang 

Erlang, 
MySQL Python, 

MySQL 
C# 

C#, WinForms 

Python, 
BaseHTTPServer 

2011 2012 2013 2010 

Erlang, Yaws, 
HTML5, CSS3, JS Ruby, Rails 

F#, WPF 
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Embedded System and Server-Side Core: 
•  1st choice of embedded platform turned out to be unlucky. (Their 3rd level support 

couldn’t / wouldn’t fix their own product…) à Supplier eventually dropped. 
•  2nd choice was a lucky one. Devices optionally with an embedded Linux, incl. a 

Python 2.6 à Embedded Python! (Performance rel. to C not an issue for us.) 
•  Natural choice: Use Python server-side, too! à 99% overlap of embedded and 

server-side code, it’s just “--embedded” to disable database access etc. 
•  Considerable part written in functional style, but of course not replacing for by 

home grown “foreach” calling a lambda. 

Client-side GUI: 
•  Initial boundary condition: “Must run in .NET on Windows.” 
•  Original concept required high amount of GUI interaction. à Rich client 
•  Choice of GUI toolkit (2010): WinForms (mature, aged L&F) vs. WPF (modern L&F) 
•  à F# with WPF, using Functional Reactive Programming for time series. 

Green Field: Initial Pragmatic Choices 

22 
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Redesign Server-Side Core in 2012: 
•  Increased scalability requirements along various dimensions: sample rate, 

redundancy, customers, industrial participants 
•  (Thread-)Concurrency in Python: It can be made to work, but that is tiring… 
•  Severely short on system tests. (Reasonable coverage in unit tests.) 
•  à Erlang/OTP: for concurrency and testability (and excellent previous experience) 
•  à Python stays for some functions (ad-hoc data analysis, forecasting, …) 

Redesign Client-side GUI: 
•  Requirements have changed considerably: 

•  Much less interaction required than original envisioned. 
•  Also used for non-interactive monitoring. 

•  Only component to have repeatedly relapsed below roll-out Q-level: 
•  Interaction performance (largely due to WPF’s approach to widgets) 
•  Memory leaks (widget resources, async + lazy + side-effects) 

•  à Web-GUI in Erlang, less interactive signal plots. Phasing-out F# / WPF. 

Requirements have Changed: Adapting the Early Choices 

23 
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Redesigned Embedded Platform in 2013: 
•  Motivation: Multi-controller access and redundancy, faster data acquisition, 

automatic catching-up after network outage. 
•  à Erlang/OTP on the embedded platform) 
•  à Porting effort for platform, submitting a few patches upstream. 

Unifying Look-and-Feel of the GUI in 2013: 
•  Focus changed from functionality (=> each compontent brings its own UI style) to an 

integrated look-and-feel with brand recognition. 
•  Important for marketing the software as a “solution”. 
•  Closer integration with the business-side software (workflow, ERP, accounting etc.) 

And Now Focus has Changed, too: It’s Not Early Days Anymore 

24 



© Entelios 2013 

…with Python: 
•  Has served us well, in particular on the embedded platform. 
•  No “unsolvable” issues, rich library, program straight-forward to extend. 
•  Relatively large step from prototype (script) to production code. 
•  Major thread-headache for realtime system, especially controlled shutdown and restart. 
 
…with F# / WPF: 
•  Has worked for us, and we do use it in production. Good fit with original concept. 
•  The only part of the software the relapsed several times below roll-out quality level. 
•  In practice, we find it hard to modify or correct other people’s F# / WPF code. 
•  One F# issue reported back to Microsoft (initializer). (Turned out version 2.0.0.0 ≠ 2.0.0.0.) 

…with Erlang/OTP: 
•  Everybody working on the project and beyond is happy with it. (Read this again, if you want.) 
•  Relatively slow project start: building, testing, establish common coding style, etc. 
•  Three issues reported back to Erlang/OTP team (ARM middle endian; dialyzer bug; _/utf8). 

 

Random Bits of Experience… 

25 
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…with MySQL: 
•  The only technology that was with us from the start, and still is today. 
•  Nearly exclusively used in “archive mode”. 
•  SQL: data must be rectangular. Lucky for us, our (time series) data is! 
•  Had to hack our own MySQL client in Erlang: not easy, one size does not fit all 
•  Insulated by about 30 min. worth of buffering from the soft real-time system. 
•  Amazing issues (v5.1): float in – another float out; character encoding broken. 
•  Nothing that we couldn’t work around. 
 
…with HTML5 / CSS3 / JS: 
•  Surprise: Browser compatibility less of an issue than expected. 
•  We keep it even simpler: CSS is hard to test, JS is browser-side (for us)  
•  Wrote our own CSS parser (in Erlang) for detecting dead (unreachable) CSS code. 

Random Bits of Experience… 

26 
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§  Relatively small step from prototype and production code. 
§  Easy to understand other people’s code. (The questions “How do I define a gen_server in 

monadic style?” and “When do they get around to object-oriented Erlang?” disappear quickly.) 
§  Often you refactor in Erlang and your code becomes 2x smaller, and that alone feels like you 

did something right. (Java: You refactor, it is clearly the right thing to do, and you constantly ask 
yourself is the result worth all the cruft.) 

§  Production code often stays stable for years. (This means modularization is effective.) 
§  Make well-tested building blocks can be recombined into different systems. 
§  Final production code much smaller (say 5x c.t. Java), once it is finished. Not necessarily faster 

to develop, though. 
§  Difficult: Shutting down processes properly without undue error propagation. (Eventually, I 

wrote a small combinatorial program to generate and study all possible ways a gen_server 
example can exit, and what happens then.) 

§  Common_test: Very useful, but noisy… 
§  QuickCheck: Complements hand-crafted tests perfectly. Hand crafted: rifle. QC: shot gun. 
§  Great: interactively debugging a live system. 
§  Great: resilience (Example: system was limping on for hours, did not loose any data) 
§  Great: hot code-update (we do the easy cases, only) 

Observations on Erlang/OTP 

27 
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Our own build mechanism “ebt” (= Entelios/Erlang Build Tool), including: 
§  build the system (on Linux, Windows and MacOSX) 
§  build the embedded system (on ARM-based Linux, on server as cross-compile) 
§  run the tests (Common_test). Variant: run only the fastest tests until 5 min. are up 
§  run the tests with cover analysis (Cover) 
§  pragma to silence Dialyzer (static code analysis):  … % dialyzer: -warn_failing_call 
§  internationalization (“i18n”): crawls the code for certain function calls, then runs GNU gettext 
§  check basic coding standards (no tabs etc.): crawl .erl, .hrl, .yaws, .css, .js, etc. 
§  compile Mercurial version into the code: every build knows its version! 
§  run Leex/Yecc (parser generators) 
 
General libraries within our Erlang code base: 
§  strings (UTF-8 as binary), timestamps (ms precision), option lists (= uptight proplists) 
§  Tracing (application-defined, not by structure of process tree) 
§  Running Gnuplot, GLPK and Python (on Linux, Windows and MacOSX) 
§  Password file access 
§  validation of HTML5, CSS3 

What We Have Added to Erlang/OTP 

28 
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Meta-programming and ways to obscure function calls at the call site: 
§  parse_transformations: consider using Erlang, repeat 
§  (define own) behaviour: we did and we rolled it back for reducing code redundancy 
§  -import: when fingers get sore, -define an abbreviation 
 
“Let it crash!” and error discipline in general: 
§  In a test: yes 
§  In the webserver: no. 
§  In a library: probably not. (It might end up part of the webserver, and it usually does.) 
§  We like {ok,Value} | {error,Reason::atom(),Details::proplist()} a lot. 
§  There is a difference between a programming error (crash is good) and bad input. 
§  check_MyType(Arg) functions returning ok|{error,_,_} do an in-depth check of a data 

structure (incl. dynamic invariants); used as assertion (ok = check(…)) or in a case. 

Type annotations, documentation and helping with static type analysis: 
§  -compile(export_all): just -export  
§  -spec: nice feature, we avoid it. Found in places where proper documentation was due. 

What We Are NOT Using from Erlang/OTP 

29 
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Unfair 
Generalizations 
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When OO in the wild fails (1)…     “Jupiter Design” 
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class Point 

class Rect 

class EverythingElseAndTheGUI_too 
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When OO in the wild fails (1)…     “Jupiter Design” 
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class Point 

class Rect 

class EverythingElseAndTheGUI_too 

method innocuous_looking(void) { 
    indirectly_access(potentially, any, 
                                 instance, variable); 
}   
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When OO in the wild fails (1)…     “Jupiter Design” 
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class Point 

class Rect 

class EverythingElseAndTheGUI_too 

Cause of Failure: Human Error… 
(“overuse of global variables”) 

method innocuous_looking(void) { 
    indirectly_access(potentially, any, 
                                 instance, variable); 
}   
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…but it’s also related to the tools!  The Economics of Redesign 
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Time 

Effort 
required 
for next 
redesign 
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Time 

Effort 
required 
for next 
redesign 

“No redesign zone” – Can’t afford it. 
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Time 

Effort 
required 
for next 
redesign 

“No redesign zone” – Can’t afford it. 
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…but it’s also related to the tools!  The Economics of Redesign 
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Time 

Effort 
required 
for next 
redesign 

“No redesign zone” – Can’t afford it. 

adding 
methods 

routing new 
arguments 

 
through 

functions 

OO-ish 

FP-ish 
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When OO in the wild fails (2)…     “State Limbo” 
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complex 
server 
thingy 

request 

reply 

def handle_request(self): 
 # self represents ‘moon’ 

 
 self.cloudy_moon_setter() 

 
 # self represents ‘cloud’ 

 
 self.rise_and_shine() 

 
 # self represents ‘sun’ 

 
 return ‘ok’ 
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When OO in the wild fails (2)…     “State Limbo” 
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complex 
server 
thingy 

request 

reply 

handle_call(Request, _, S1) −> 
 % state S1 is ‘moon’ 

 
 S2 = cloudy_moon_set(S1) 

 
 % made a new state S2 = ‘cloud’ 

 
 S3 = risen_and_shining(S2) 

 
 % yet another state S3 = ‘sun’ 

 
 {reply, ok, S3}. % set next state 
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When OO in the wild fails (2)…     “State Limbo” 
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complex 
server 
thingy 

request 

reply 

def handle_request(self): 
 # self represents ‘moon’ 

 
 self.cloudy_moon_setter() 

 
 # What is the state now? 
 # Clean up OR press on? 
 # But how? 

 
 return ‘bummer’ 
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handle_call(Request, _, S1) −> 
 % state S1 is ‘moon’ 

 
 S2 = cloudy_moon_set(S1) 

 
 % The state is S1 + side-effects 
 % from cloudy_moon_set/1. 
 % Server state S1 is still around, 
 % can be used to clean up. 
  
 {reply, bummer, S1}. 

When OO in the wild fails (2)…     “State Limbo” 
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complex 
server 
thingy 

request 

reply 
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The “2-out-of-3” Rule of Dealing of Project Risk 
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Functionality 

Duration 
(Completion 

Date) 

Cost 
(Burn Rate)  

Fixed  Risk   Remark 
 
FD  More resources  Traditional “waterfall” project 
FC  Sliding deadlines  Traditional “institutional” project 
DC  Feature starvation  “Agile” project 
 
F  Slow & expensive  Confused “agile” with carte blanche 
D  Unusable result  Endless financial renegotiation 
C  Unusable result  Endless feature reprioritizing 
 
FDC  Project locks up  “Ignore the risks” project, will blow up 
-/-  Loss of focus  “Nothing gets ever done” project 
 
 

Examples 
FD: Module of deep space probe (dependability requirements, launch window) 
FC: Next version of major operating system (functionality previews, limited resources for fixing bugs) 
DC: Milestone of start-up company (expectations of partners, hours/day limited) 
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Programming 
Languages and 
the Power Grid 
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§ “Power Grid” sounds more fixed and set than it actually is. 

§ Society’s preferences for the power grid can and do change. 

§ Entelios AG is a young company helping stabilize the grid using 
the approach of Demand Response. 

§ Functional Programming concepts and tools have served us 
well in accomplishing this. 

§ Systems connected to the power grid could benefit by re-
evaluating the basic assumptions. 

Summary 
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Time for 
Questions 


