
HtMl5 eXpErTiSe aT yOuR sErViCe 	

LaUrI SvAn @lAuRiSvAn
Sc5 OnLiNe @sC5

EnGiNeErInG HtMl5 aPpLiCaTiOnS
fOr bEtTeR pErFoRmAnCe

“GiVe mE sOmEtHiNg tHaT I cAn UsE”

15 YeArS ReTrOsPeCtIvE oF My PeRsOnAl GeAr
1000 tImEs tHe sPeEd iN 15 yEaRs

 CPU Display Connection
Network

Speed / bps
CPU /

MFLOPS Pixels

1994 80486 640x480 modem 14,400 3 307,200

1999 AMD Athlon 500 1024x768 ISDN 128,000 180 786,432

2003 AMD Athlon Tbird 1600x1200 cable modem 300,000 373 1,920,000

2010 Intel Core i5 HDMI cable modem 4,000,000 4,256 4,096,000

1000 tImEs tHe CpU, 20 tImEs tHe BaNdWiDtH tO DrAw
a PiXeL

web	 pages?	

slow	 web	 pages!	

pre.y	 	 good	 pages	
(in	 desktop)	

Or eVeN 20 tImEs fAsTeR?

So Do wE FeEl OuR ApPs rUn 1000
tImEs fAsTeR?

3 tImEs fAsTeR?

We gOt uSeD To CrEaTiNg SlUgGiSh WeB SeRvIcEs
At tHe SaMe tImE, ApPlE dElIvErEd a SlIcK ApP ExPeRiEnCe

ı 7

2005	 2007	 2009	 2011	 2013	

Web	

1G	 Smartphone	

iPhone	

PC	

UsEr eXpErIeNcE	

We hAvE TrAdEd PeRfOrMaNcE fOr EvErYtHiNg ElSe

•  Distributing the data & computation far away
personal computing à web services à mobile & cloud

•  Consuming increasingly rich data
Text à Images à Videos

•  Moving to highly abstracted & interpreted languages
C à Java à JavaScript

WeB SiTeS StIlL GeT BiGgEr
NoV 2010- SePt 2013 StAtS, HtTp ArChIvE / StEvE SoUdErS

MoBiLe DeViCeS - 5 yEaRs BaCk iN CpU SpEeD,
10 yEaRs BaCk iN CoNnEcTiOn BaNdWiDtH

Samsung

Galaxy S4
My Machine

(2003)
My Machine

(2010)
CPU / MFLOPS 1500 373 4,256
Display / Pixels 2073600 1,920,000 4,096,000
Connection Speed / bps 384000* 300,000 4,000,000

*	 Assuming	 3G/UMTS	 safe	 speed,	 due	 to	 low	 adopNon	 of	 4G	 networks	

2005	 2007	 2009	 2011	 2013	

Web	

iPhone	

HTML5	

HtMl5 & WeB ApPs To ChAlLeNgE
NaTiVe ApPs iN SlIcKnEsS

ı 11

UsEr eXpErIeNcE	

UNlizing	 HW	
accelerated	 graphics,	

offline	 assets,	
advanced	 gestures	
and	 high	 perf	 JS	

engines	

LeT’s TaRgEt fOr MoBiLe ApP PeRfOrMaNcE

•  1s app startup time (first page load time)
•  1s for any subsequent view/page (reasonable delay)
•  100ms UI response time (noticeable delay)
•  16ms paints (LCDs will refresh 50-60Hz, the rest is surplus)

HTML5 App
•  1000 DOM elements
•  1Mb of images and 100

network requests on page
load

How about these?
•  1s first page fold

Native App
•  1000 widgets?
•  1Mb of images and 100

network requests on app
startup?

•  1s application install?

WeB eNgInEs aRe qUiTe fAsT!
LeT’s uSe tHe sAmE yArDsTiCk wHeN mEaSuRiNg

If yOuR eMuLaToR rUnS 20 tImEs
fAsTeR tHaN tHe TaRgEt, wHaT cAn
yOu eXpEcT aBoUt PeRfOrMaNcE?

LeT’s EnGiNeEr tHe WeB ApPs tHe
SaMe wAy ApPs ArE EnGiNeErEd

oNe-sEcOnD PaGe LoAdS

OnE SeCoNd BuDgEt

•  Turn on radio 300ms!
•  DNS lookup + 150ms!
•  SSL handshake + 200ms!
•  Process & load HTML & other resources + 200ms!
•  Parse à Layout à Paint = 150ms!

SiMuLaTe SlOw PaGe SpEeDs
•  Developers tend to have ultra-fast computers & networks and forget

the Egde & 3G network

•  Tip: Network Link Conditioner XCode Plugin & ipfw rules

A sImPlE sImUlAtIoN ShElL ScRiPt
#!/bin/sh!
#!
simulate_3g.sh - Simulate a sluggish 3G network with delays & packet loss!

Usage: simulate_3g.sh 8080 8081!
!
Make sure only root can run our script!
if [[$EUID -ne 0]]; then!
 echo "This script must be run as root" 1>&2!
 exit 1!

fi!
!
Simulate http over 3G, 300kbit/s with 5% packet loss and 200ms delays!
into all ports given as a parameter!
ipfw pipe 1 config delay 200 plr 0.1 bw 300kbit/s!
for var in "$@"!

do!
 ipfw add 1 pipe 1 dst-port $var!
done!

CoMbInE aNd CoMpReSs yOuR ReSoUrCeS

•  Combine and minify your CSS and JavaScript
•  Combine small icons into a sprite sheet
•  Squeeze the last bits from your images: It is much easier to

remove 100k from your images than your JavaScript code!

•  Tip: You should automate this, e.g. using Grunt

CaChInG tHe AsSeTs

•  CDNs for caching assets close to the user
•  Varnish, Squid, Nginx etc. in front of your app server
•  Having the CDNs and caches working requires good

headers from your app server, too
•  Tip: Let your Apache/Nginx reverse proxy care for your

headers, they usually do it much better than you do

 Cache-Control: public, max-age=0  
!Etag: "91580-1380653643000“  
!Last-Modified: Tue, 01 Oct 2013 18:54:03 GMT!

ShArD fOr SeVeRaL DoMaInS

•  Modern browsers limit to 6 connections per host your non-
scripted resources (e.g. CSS, images) from several hosts

•  Severe problem because HTTP 1.1 requires the resources
to be sent in the order they were requested

•  Note: Remember the browser security rules, particularly

CORS and Same-origin policy

If yOu StIlL gOt TiMe tO OpTiMiZe PaGe LoAdS

•  Optimize for the first page fold: Critical CSS and JS
embeded

•  Optimize for connection drops & offline: Application Cache
•  Batch your API calls
•  Serve responsive images, prepare for the W3C adaptive

images extension

!<img alt="The Breakfast Combo” src="banner.jpeg”  
! !srcset="banner-HD.jpeg 2x,  
! !banner-phone.jpeg 100w,  
! !banner-phone-HD.jpeg 100w 2x”>!

60 fRaMeS ScRoLl aNd AnImAtIoN

OlD-ScHoOl OpTiMiZaTiOnS WoN’t HeLp YoU

•  JavaScript is typically not your problem
•  CSS selector lengths typically have only a minor impact
•  Browsers spend ~90% of its computation layouting and

painting

What you want to track is
•  The causes of relayout and repainting
•  What their costs are

•  Tip: Watch out adding/removing classes & hovering

“TyPiCaL PaInT LoOp”
FuncNon	
call	 /	 Event	

Recalculate	
Style	

Layout	

Paint	

Composite	
Layers	

JavaScript	 Engine	 (CPU	 /	 Virtual	 Machine)	

Render	 Tree	 &	 Layout	 Engine	 (CPU)	

Paint	 Engine	 (CPU)	

Compositor	 (GPU)	

AlL CsS OpErAtIoNs aReN’t EqUaL

•  Geometry changing ops: Layout, repaint, compositing
•  width, height etc…

•  Paint-only ops: Repaint & compositing only
•  borders, outlines, box shadow, etc…

•  Composition only (or less): Things that are 100% in GPU
•  CSS3 Transforms, Opacity

OpTiMiZiNg LaYoUtS & PaInTs

•  Avoid DOM reads after geometry changing DOM
operations

•  Avoid a few expensive paint operations (shadows, border
radius, flexbox etc…)

•  Use translateZ(0) hack if you need a HW accelerated
element

•  Use CSS3 transforms for animating, they will not cause
reflows

1/10 sEcOnD tO ReSpOnD,
OnE sEcOnD tO sHoW ThE rEsUlTs

TrAdItIoNaL PaGeS DoN’t Do aNyThInG uNtIl yOu TeLl

click	 *click*	

Tradi&onal	

ImMeDiAtE FeEdBaCk bUyS YoU tImE
OvErAlL pErFoRmAnCe mAy gEt fAsTeR, tOo

click	 *click*	

Feedback	

PrElOaDiNg & BoOtStRaPpInG To ShOw tHe NeXt PaGe FaStEr
YoU MaY HuRt YoUrSeLf BaD!

click	

+	

click	

Preloading	

Bootstrapping	

LaZy LoAd - OpTiMiZiNg fOr tHe FiRsT PaGe FoLd

+	 +	

1st	 fold	 inlined	 Rest	 of	 the	 page	 as	
separate	 resources	

+	

Lazy	 Load	

PeRfOrMaNcE iS nO ExCePtIoN. At sOmE pOiNt yOuR aRcHiTeCtUrE
wIlL fIgHt aGaInSt yOu.

QuAlItY AtTrIbUtEs oF yOuR aPp aRe
sEt bY yOuR ArChItEcTuRe.

ReCaP: GeTtInG tO tHe pErFoRmAnCe tArGeTs

•  Set the performance goals, prepare for tradeoffs
•  Track the goals from the beginning
•  Don’t guess; measure
•  Simulate the target performance as part of your daily work
•  Keep your code simple, don’t trade it for performance
•  Perfect is the enemy of the good

ThAt’s AlL!

AnY QuEsTiOnS?

HtMl5 eXpErTiSe aT yOuR sErViCe 	

LaUrI SvAn

ThAnK yOu !

Software Architect, SC5 Online Ltd
https://github.com/laurisvan
https://twitter.com/laurisvan

