

David Catuhe
Windows Clients Evangelist Lead

http://aka.ms/david
@deltakosh

David Rousset
Windows Clients Evangelist

http://aka.ms/davrous
@davrous

Agenda

 Why building a WebGL 3D engine ?
 The old school way: Using the 2D canvas
 The rise of GPUs
 Using WebGL directly

 Using Babylon.js to create 3D apps and games
 How to use Babylon.js?
 Advanced features

 What we’ve learned…
 Tracking and reducing the pressure on garbage collector
 Performance first
 Handling touch devices

Why building a WebGL3D engine ?

The oldschoolway: using 2D canvas
Build a 3D “Software” engine that only uses the CPU

Wireframe Rasterization Lights &
Shadows Textures

The rise of GPUs

Hardware accelerated
rendering:

2D Canvas, CSS3 animations
Accelerated 3D

with WebGL

H264 & JPG hardware
decoding

Using WebGL directly
Requires a compatible browser:

A new context for the canvas:

canvas.getContext("webgl", { antialias: true}) ||
canvas.getContext("experimental-webgl", { antialias: true});

Using WebGL directly
WebGL is a low level API

Need to handle everything
except the rendering:

 Shaders code (loading, compilation)
 Geometry creation, topology, transfer
 Shaders variables management
 Texture and resources management
 Render loop

Using Babylon.js to create 3D apps & games

How to use Babylon.js ?
Open source project (Available on Github)

http://www.babylonjs.com
https://github.com/babylonjs/babylon.js

How to use it? Include one file and you’re ready to go!

To start Babylon.js, you’ve just need to create an engine object:

<script src="babylon.js"></script>

var engine = new BABYLON.Engine(canvas, true);

How to use Babylon.js ?
Babylon.js is a scene graph: All complex features are abstracted for YOU!

Handling rendering can be done in one line:

var scene = new BABYLON.Scene(engine);

var camera = new BABYLON.FreeCamera("Camera", new BABYLON.Vector3(0, 0, -10), scene);
var light0 = new BABYLON.PointLight("Omni0", new BABYLON.Vector3(0, 100, 100), scene);
var sphere = BABYLON.Mesh.createSphere("Sphere", 16, 3, scene);

engine.runRenderLoop(function() { scene.render(); });

Advanced features

Offline support
IndexedDB

Network optimizations
Incremental loading

Blender exporter
Design & render

Complete collisions engine

What we’ve learned?

Tracking & reducing the pressure on GC
A 3D engine is a place where matrices, vectors and quaternions live.

And there may be tons of them!

Pressure is huge on the garbage collector

Tracking & reducing the pressure on GC
Maximum reuse of mathematical entities

 Pre-instantiate
 Stock variables

GC friendly arrays (able to reset size at no cost)

When the scene is up and running, aiming at no allocation at all

Performance first

Efficient shaders
Do only what is REALLY required

Scene partitioning
Frustum / submeshes / octrees

Complete cache system
Update WebGL only when

required

Handling touch devices

@deltakosh / @davrous

